CA Final Strategic Financial Management

OUTNOTESUNIQUE STRUCTURED CONCEPT NOTES ALONG WITH THEORY NOTES

Relevant for Nov- 23 \& onwards...

Adish Jain CA CFA
© +917045748955

Meet Adish Jain

Chartered Accountant (CA) \& Chartered Financial Analyst (CFA)

Ex-Morgan Staley \& ICICI Securities with 2+ years work-ex in Equity Research

Teaches CA Final-SFM, CFA and Financial Modelling

Taught 4000+ students across courses
His 2 core mantra for students:

- Conceptual Clarity
- Comprehensive Coverage

Adish Jain CA CFA

Hey! Let's connect here...

2 Amazing Features

Changing student's experience...

* Mouth \& day counting pule: 71 \& 123 . * Rounding off Rules:

SCANNABLE

 COMPILER

UNIQUE STRUCTURED CONCEPT NOTES

OutNotes vs. ICAI Chapters

No.	ICAl Chapter Name	OutNotes Chapter Name
1	Financial Policy and Corporate Strategy	Financial Policy and Corporate Strategy
2	Risk Management	Risk Management \& Security Analysis
4	Security Analysis	
3	Advanced Capital Budgeting Decisions	Advanced Capital Budgeting Decisions
5	Security Valuation	
	Preference Share Valuation	Fixed Income Securities
	Bond Valuation	
	Money Market Securities	
	Equity Valuation	Equity \& Business Valuation
13	Business Valuation	
6	Portfolio Management	Portfolio Management
7	Securitization	Securitization
8	Mutual Funds	Mutual Funds
9	Derivatives Analysis and Valuation	Derivatives \& Interest Rate Risk Management
12	Interest Rate Risk Management	
10	Foreign Exchange Exposure and Risk Management	Foreign Exchange \& International Financial Management
11	International Financial Management	
14	Mergers, Acquisitions and Corporate Restructuring	Mergers, Acquisitions and Corporate Restructuring
15	Startup Finance	Startup Finance

Table of Content

Chapter No.

Page No.

Basics of AFM

Equity \& Business Valuation

Mergers, Acquisition \& Corporate Restructuring
Fixed Income Securities

Portfolio Management

Mutual Fund

Derivatives \& Interest Rate Risk Management

> Foreign Exchange \& International Financial Management

> Advanced Capital Budgeting Decisions

```
193
```

Risk Management \& Security Analysis
205

Theory Topics

Tables

Important Instructions before we read this book...

- This book has been creatively designed to help you understand and remember the concepts easily. For this purpose, concepts have been presented in diagrams and charts format. However, for theory topics, answers must be written in simple pointers and paragraph format in exams.
- The purpose of text in Grey Colour is to give you the background of the main concept, which will be more useful while reading first time. At the time of revision, you should make use of colour coding \& ignore grey text.
- Below theory chapters \& topics have more importance and should be studied on priority to other chapters:

Chapters:

1.Start-Up Finance
2. Securitization
3. Financial Policy and Corporate Strategy
4. Risk Management
5. Security Analysis

Chapters	M 23	N 22	M 22	N 21	M 21	N 20 (II)	N 20	N 19
Start-Up Finance	8	8	4	8	8	8	7	8
Securitization	4	4	4	4	4	8	4	8
Financial Policy \& Corp Strat	4	4	4		4	4		4
Risk Management Security Analysis			4	4	4			
Other Chapters			4			4		
Total	$\mathbf{8}$	$\mathbf{1 2}$	8	4	4		4	

Rounding off Rules.
If the number being calculated naturally has only 2,3 or 4 digits after decimal point, then there is no need to round off and student can continue to use that number in the solution. However, if there are many digits after the decimal point then rounding off should be done as follows:

Basics of Financial Management

No. of digits after decimal points.
Returns: $\alpha_{e}, R_{F}, E(R), \sigma, \sigma^{2}, \operatorname{RoE}, \alpha$

2
\square
3

Weights \& probabilities ($\%$)
mutual Fund Units \& NAV
Amount not in calahs, million or Crore.

Beta (β)
PVF. FVF, etc.
Duration (mocaulays \& modified.)
Correlation (γ)
Exchange Ratio ($m \notin A$)

Weights \& probabilities (decimals)
Exchange Rate (ivecser question has some other flow)
Binomial model: $\| \in d$.
$B \notin s: d_{1}, d_{2}, N\left(d_{1}\right) \& N\left(d_{2}\right)$
mutual Fund NAV
Amount in Lakhs, million or crore.

Basics of Financial Management

A. Basic Ratios

1) Earnings Per Share

Earnings Per Share (EPS)

$$
\frac{\text { EAES }}{n}
$$

n : no. of shares.
In the absence of preference dividend, EAES = PAT.

P\&L extract:

Particulars	Amount
PAT.	$\times \times$
$(-)$ Pref. div	$(\times \lambda)$
EA to ES	$\times X$

2) Price Earnings Ratio \& Market Price per Share

Price Earnings Ratio (PE Ratio): PE Ratio is 'how much are the investors ready to pay for a share of a company, for every rupee of income earned from it'. And a lot more...

Market Price Per Share (MPS)

$$
\text { PE: } \frac{\text { PPS }}{\text { ERS. }}
$$

MPS: EPS×PE.
3) Dividend: Absolute \& Percentage

4) Market Capitalization

Market Capitalisation (M-Cap) means total market value of equity shares of the company.
Example: Justdial Ltd has 1000 equity shares outstanding. Current market price is ₹ 15 per share.

Shareholding Pattern	Number of Shares	Holding \%
Promoters	700	70%
General Public	300	30%

It is the total value of all equity shares of the company.

It is that part of total market cap that is not held by promoters i.e., held by general public

Calculation of M-Cap

Total no. of shares $x \mathrm{mps}$

$$
\begin{aligned}
& =1000 \times 15 \\
& =15.000
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tree -float } \begin{array}{l}
\text { no. of shares } \times \text { PPS. } \\
300 \times 15=4500 . \\
\text { Total } \times \text { Free float }
\end{array} .
\end{aligned}
$$

$$
X
$$

\qquad

5) Book Value per Share

Book-value per Share (BVPS) is

the per share value of equity shareholders in the net assets of the company as per books.

Net assets or Net worth.
Equity Shareholders Funds (ESHF) is the total value of equity shareholders in the net assets of the company as per books.

$$
\begin{aligned}
\text { ESHF: } & \text { ESC }+R \& S-P / L(D r) \text { - mis. Exp. (Dr.) } \\
: \text { Total - External } & \text { Asset - Lability - } / L(D r) \text { - His. Exp. }
\end{aligned}
$$

6) Return on Equity

Return on Equity (ROE) is the accounting return to the equity shareholders as per books.
EARS.
or.
$\frac{E R S}{B V P S}$

B. Different types of Rates of Return

1) Expected Rate of Return

It is the rate of return that an investor estimates (expects) that he will earn on an investment. It reflects the perception of investor for that investment. It is usually calculated from 1 year's perspective on the share of the company.

Example: A share is bought today @ ₹ 100 and investor estimates that it can be sold @ ₹ 115 after a year. Then, expected rate of return on the investment is 15%.

$$
\begin{aligned}
E\left(R_{i}\right) & : \frac{P_{1}-P_{0}+D}{P_{0}} \\
& : \frac{115-100+0}{100} \\
& : 15 \% .
\end{aligned}
$$

2) Internal Rate of Return (technique)

It is the discounting rate at which PV of cash inflows from an investment is equals to initial cash outflow. It is calculated to determine the compounded rate of return actually earned (in case of ex-post data) or to be earned (in case of ex-ante data) on any investment.

Example:

Year	Cash Flows (₹)
0	-110
1	11
2	121

$$
\begin{aligned}
& 110=\frac{11}{(1+\gamma)^{1}}+\frac{121}{(1+\gamma)^{2}} \\
& \gamma: 10 \%
\end{aligned}
$$

\qquad
Verifying the return earned:

Year	Amount Invested	Return Accrued	Return received	Due Amount

3) Required Rate of Return

It is the minimum rate of return required from an investment.,Also called as Opportunity Cost, it is used as discounting rate to calculate PV of cash flows. When compared with expected rate of return, it helps in investment decision.
\qquad

Inflation Premium
Compensation for loss of purchasing power of money invested

Real Risk-free Rate Compensation for allowing use of money to other

Risk Premium
Compensation for taking risk while making a risky investment

Nominal Rate to discount RF cosilflows.
C. Time Value of Money

6 months' period Y cor.	1	2	3	4	5
Cash Flows (₹)	200	200	200	200	200

Example: Discounting rate $=10 \%$

Single Sum:

Value of $₹ 200$ at the end of year 5th period:

$$
\begin{aligned}
F V & : P V \times F V F_{(10 \cdot 1,5)} \\
: & 200 \times(1.1)^{5} \\
: & 200 \times 1.611 \\
& : 322.2
\end{aligned}
$$

Value of ₹ 200 today:

$$
\begin{aligned}
P V & : F V \times P V F(10 \%, 5) \\
& : 200 \times \frac{1}{(1.1)^{5}} \\
& : 200 \times 0.621 \\
& : 124.2
\end{aligned}
$$

Annuity: $[A]$
Regular Annuity
Value of all CFs at the end of $5^{\text {th }}$ period assuming CFs occur at the end of the period:

$$
\begin{aligned}
& =m+\ldots-\cdots 1.464 \\
& F V=A \times F V A F \\
& 200 \times .6: 105 \\
& (10 \%, 5) \\
& 1221 . \\
& \therefore 200 \times 3.791 . \\
& \text { : } 758.2 \text {. }
\end{aligned}
$$

Value of all CFs today assuming CFs occur at the end of the period:

PD: $A \times \operatorname{PVAF}_{(101,1,5)}$

Annuity Due

Value of all CFs at the end of $5^{\text {th }}$ period assuming CFs occur in the beginning of the period.

Value of all CFs today assuming CFs occur in the beginning of the period.

Perpetuity

Value of infinite number of CFs of ₹ 200 at the end of infinite period:

Impossible to calculate.

List of Patios used in

Value of infinite number of CFs of ₹ 200 today:

$$
\begin{aligned}
P V & \frac{A}{\gamma} \\
: & \frac{200}{0.1}: E 2000 .
\end{aligned}
$$

Asset Turnover Ratio Asset to sales. Ratio

$$
\text { - ROEG: } \quad \frac{E B I T}{C E=E+D+P .}
$$

$$
\text { - NPA Ratio (} \% \text {): NPA (₹) }
$$

Advances (loon given.)
D. Types of Cash Flows

Nominal Cash Flows
Nominal cash flows are the amount of future revenues or expenses the company expects to receive or pay. Nominal cash flow has effect of inflation included in it.

Real Cash Flows
When effect of inflation is removed from such future cash flows, they are called Real cash flows. Real cash flow does not have effect of inflation included in it.

Relationship between Nominal cash flow and Real cash flow:

Nominal CF Real CF

To calculate PV of real cash flow, real discounting rate is used.

Relationship between Nominal and Real discounting rate:

$$
(1+\text { Nominal. })=\left(1+R_{e J}\right)(1+\text { Ind lat })
$$

Example: Cipla Ltd has forecasted cash inflow of ₹ 100 crores to be received at the end of $2^{\text {nd }}$ year. Real discounting rate is 10% and inflation in the economy is at 5%. Calculate PV of future cash flow using Nominal discounting rate and Real discounting rate.

Using Nominal discounting rate:
nominal
Rate

$$
: 15.5 \cdot 10
$$

$$
\overline{(1.155)^{2}}
$$

$$
: \quad 74.96
$$

Using Real discounting rate:

$$
\begin{aligned}
\text { Real CF: } & \frac{\text { Nominal }}{(1+\text { Inflation. })^{2}} \\
: & \frac{100}{(1.05)^{2}} \\
: & 90.70 . \\
P V: & \frac{90.70 .}{(1.1)^{2}} \\
& =74.96 .
\end{aligned}
$$

E. Types of Interest Rates

1) Fixed vs Floating Interest rates

Part from Fixed Income: calculating Fwd rate using spot

Equity \& Corporate Valuation

- Term structure / yield curve
- team of 2 B : spot.

Dividend Based Valuation Models

- Zero Growth Model
- Constant Growth Model
- Variable Growth Model
- H Model

Cash Flow Based Valuation Models

- Free Cash Flow to Firm Approach
- Free Cash Flow to Equity Approach

Asset Based Valuation Models

- Net Asset Value Method

Earnings Based Valuation Models

- Earnings Capitalisation Method
- Walter's Model

Relative Valuation

- Equity Value Multiples Based Valuation
- Enterprise Value Multiples Based Valuation
- Chop - Shop Approach

Other Important Topics

- Economic Value Added
- Market Value Added
- Concept of Rights Issue
- Concept of Buy-back
- Concept of Bonus Issue
A. Dividend based Valuation Models

Fundamental Principle of Valuation: Value of any asset today is the present value (PV) of all future cash flows (CFs) generated from that asset. Value of:

Equity Share	$P \vee($ Div. $)+P \vee($ Sales price $)$
Bonds	$P \vee($ (ovpon $)+P V(R V)$.
Any other asset	$P \vee(F C F)$

Common sense behind the principle: Suppose a share can be sold @ ₹ 110 at the end of one year. Your required rate of return is 10%. How much will you be ready to pay for that asset so that you earn required return of 10% ?

Dividend Discount Models (DAMs) use dividends as the basis of calculating Intrinsic Value (IVwhat should be the valued) of shares.

Yes Bank is expected to distribute dividends of $₹ 10$ and $₹ 12$ next year and a year thereafter. At the end of this period, its share is expected to be sold at ₹ 150. Calculate the value of share if discounting rate is 15%.

Calculation of cost of equity
We know that dividends belong to ESHs, therefore, discounting rate to be used to calculate PV will be required rate of return to ESHs i.e., Cost of Equity $\left(K_{e}\right)$:

- Preference \# 1: CAPM*

*CAPM is covered in detail in the chapter 'Portfolio management'.
- Preference \# 2: Gordon's Formula
\qquad

\[

\]

- Preference \# 3: Earning's Yield
\qquad
\qquad

Required Rate of Return (R_{j}) vs Expected Rate of Return ($E\left(R_{i}\right)$)
Many times, examiner uses the words 'Required Rate of Return' and 'Expected Return' interchangeably. This is simply because:

If $E\left(\boldsymbol{R}_{i}\right)=\boldsymbol{R}_{\mathrm{j}} \Rightarrow$ then $\mathrm{P}_{0}=I V$
OR

$$
\text { If } \boldsymbol{P}_{0}=I V \Rightarrow \text { then } E\left(\boldsymbol{R}_{i}\right)=\boldsymbol{R}_{j}
$$

It means that examiner is assuming the security as fairly valued. Hence, by whatever name ($E\left(R_{i}\right)$ or R_{j}) rate is given in the question, it will be used as discounting rate to calculate IV.

Conclusion: In other words, solve the question normally by treating the given rate as R_{j}.

